Robust Semi-Supervised Manifold Learning Algorithm for Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Manifold Semi-Supervised Learning

We study semi-supervised learning when the data consists of multiple intersecting manifolds. We give a finite sample analysis to quantify the potential gain of using unlabeled data in this multi-manifold setting. We then propose a semi-supervised learning algorithm that separates different manifolds into decision sets, and performs supervised learning within each set. Our algorithm involves a n...

متن کامل

Semi-supervised classification learning by discrimination-aware manifold regularization

Manifold regularization (MR) provides a powerful framework for semi-supervised classification (SSC) using both the labeled and unlabeled data. It first constructs a single Laplacian graph over the whole dataset for representing the manifold structure, and then enforces the smoothness constraint over such graph by a Laplacian regularizer in learning. However, the smoothness over such a single La...

متن کامل

Regularized Semi-supervised Classification on Manifold

Semi-supervised learning gets estimated marginal distribution X P with a large number of unlabeled examples and then constrains the conditional probability ) | ( x y p with a few labeled examples. In this paper, we focus on a regularization approach for semi-supervised classification. The label information graph is first defined to keep the pairwise label relationship and can be incorporated wi...

متن کامل

Active Learning Methods for Semi-supervised Manifold Learning

The objective of this paper is to propose a principled approach for selecting the data points for labeling used in semi-supervised manifold learning. We postulate that the data points should be chosen so that the alignment matrix for the remaining data points will have the best condition number possible. We also proposed an efficient algorithm for selecting principal submatrices of the alignmen...

متن کامل

Semi-Supervised Learning with Manifold Fitted Graphs

In this paper, we propose a locality-constrained and sparsity-encouraged manifold fitting approach, aiming at capturing the locally sparse manifold structure into neighborhood graph construction by exploiting a principled optimization model. The proposed model formulates neighborhood graph construction as a sparse coding problem with the locality constraint, therefore achieving simultaneous nei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2018

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2018/2382803